Problema 12
Obtén el conjunto solución de
- \( \lvert 4x-5 \rvert \leq 13 \)
- \( \lvert x^{2}-1 \rvert \leq 3 \)
- \( \lvert x-1 \rvert > \lvert x+1 \rvert \)
- \( \lvert x-3 \rvert < \lvert x+5 \rvert \)
P12.A
\( \lvert 4x-5 \rvert \leq 13 \)
$$ \begin{align*} \lvert 4x-5 \rvert \leq 13 & \implies -13 \leq \lvert 4x-5 \rvert \leq 13 \end{align*} $$- Caso 1. \( 4x-5 \geq - 13 \)
\( 4x \geq - 8 \)
\( x \geq -2 \) - Caso 2. \( 4x-5 \leq 13 \)
\( 4x \leq 18 \)
\( x \leq \frac{9}{2} \)
P12.B
\( \lvert x^{2}-1 \rvert \leq 3 \)
$$ \begin{align*} \lvert x^{2}-1 \rvert \leq 3 & \implies -3 \leq \lvert x^{2}-1 \rvert \leq 3 \end{align*} $$- Caso 1. \( x^{2}-1 \geq -3 \)
\( x^{2} \geq -2 \)
No existe solución en \( \mathbb{R} \) para este caso - Caso 2. \( x^{2}-1 \leq 3 \)
\( x^{2} \leq 4 \)
\( x^{2} \leq 4 \)
\( x \leq \pm 2 \)
P12.C
\( \lvert x-1 \rvert > \lvert x+1 \rvert \)
Note que \( \lvert x-1 \rvert > \lvert x+1 \rvert \implies x < 0 \)
\( (x-1)^{2} > (x+1)^{2} \implies x^{2} -2x + 1 > x^{2} +2x + 1 \)
\( \implies -2x + 1 > 2x +1 \)
\( \implies -4x > 0 \)
\( \implies x < 0 \) $$ \begin{align*} \{ x \mid x < 0 \} \end{align*} $$
P12.D
\( \lvert x-3 \rvert < \lvert x+5 \rvert \)
Note que \( \lvert x-3 \rvert > \lvert x+5 \rvert \implies x < 0 \)
\( (x-3)^{2} > (x+5)^{2} \implies x^{2} -6x + 9 > x^{2} +10x + 25 \)
\( \implies -6x + 9 > 10x + 25 \)
\( \implies -16x > 16 \)
\( \implies x < -1 \) $$ \begin{align*} \{ x \mid x > -1 \} \end{align*} $$