Problema 11
Obtener el conjunto solución de
- \(4x-5 < 7x-4\)
- \(x < \frac{5x-2}{2} < 7-x\)
- \(\frac{3}{x+5} < x\)
- \(x^{2} < 4x\)
- \(x^2 \leq x+2\)
- \(\frac{x}{1-x}\geq\frac{2+x}{x}\)
- \(\frac{x^2-1}{x^2+2} < 3\)
- \(\frac{x^2-4x}{x^2} \geq 1-x\)
P11.A
\(4x-5 < 7x-4\) \(\implies -5+4 < 7x-4x \implies -1 < 3x\implies x > -\frac{1}{3}\)Por lo que \(\boxed{x\in(-\frac{1}{3},\infty)}\)
P11.B
\(x < \frac{5x-2}{2} < 7-x\)
- \(x < \frac{5x-2}{2} \implies 2x < 5x-2 \implies 2 < 3x \implies x > \frac{2}{3}\)
Por lo que \(x\in(\frac{2}{3},\infty)\)
- \(\frac{5x-2}{2} < 7-x\implies 5x-2 < 14-2x \implies 7x < 16\implies x <
\frac{16}{7}\)
Por lo que \(x\in(-\infty,\frac{16}{7})\)
Así, \(x\in(\frac{2}{3},\infty)\cap(-\infty,\frac{16}{7})\), de donde
\(\boxed{x \in ( \frac{2}{3},\frac{16}{7} ) } \)
P11.C
\(\frac{3}{x+5} < x\)
- \(x+5 > 0\implies x > -5\) \(\implies 3 < x(x+5) = x^{2} + 5x\)
- \(x+5 < 0\implies x < -5\) \(\implies 3 < x(x+5)\) \(\vdots\) \( \mid x+\frac{5}{2} \mid < \frac{\sqrt{37}}{2}\) \(-\frac{\sqrt{37}}{2} < x + \frac{5}{2}<\frac{\sqrt{37}}{2}\) \(\frac{-5-\sqrt{37}}{2} < x < \frac{-5+\sqrt{37}}{2}\) Así, \(x\in(\frac{-5-\sqrt{37}}{2},\frac{-5+\sqrt{37}}{2})\cap(-\infty,-5)\). Por lo tanto, \(x\in(\frac{-5-\sqrt{37}}{2},-5)\). Así, \(\boxed{x\in(\frac{-5-\sqrt{37}}{2},-5) \cup (\frac{-5+\sqrt{37}}{2},\infty)}\)
\(\implies x^{2} + 5x + \frac{25}{4} > 3 + \frac{25}{4}\)
\(\implies (x + \frac{5}{2})^{2} > \frac{37}{4}\)
\(\implies |x + \frac{5}{2}| > \frac{\sqrt{37}}{2}\)
\(\implies x + \frac{5}{2} > \frac{\sqrt{37}}{2}\) o \(x+\frac{5}{2} < -\frac{\sqrt{37}}{2}\)
\(\implies x>\frac{-5+\sqrt{37}}{2}\) o \(x < \frac{-5-\sqrt{37}}{2}\)
Así, \( x \in [( - \infty, \frac{-5 -\sqrt{37}}{2}) \cup (\frac{ -5 + \sqrt{37}}{2}, \infty)] \cap (-5,\infty)\).
Por lo tanto, \(x\in(\frac{-5+\sqrt{37}}{2},\infty)\).
P11.D
\(x^{2} < 4x\)
\(\implies x^{2} - 4x < 0 \implies x^{2} - 4x + 4 < 4 \implies (x-2)^{2} < 4\) \(\implies \lvert x-2 \rvert < 2\) \(\implies -2 < x-2 < 2\) \(\implies 0 < x < 4\) Por lo tanto, \(\boxed{x\in(0,4)}\)P11.E
\(x^{2} \leq x+2\)
\(\implies x^{2} - x \leq 2 \implies x^{2} - x + \frac{1}{4} \leq 2 + \frac{1}{4} \implies (x - \frac{1}{2})^{2} \leq \frac{9}{4}\) \(\implies | x - \frac{1}{2} | \leq \frac{3}{2}\) \(\implies -\frac{3}{2} \leq x-\frac{1}{2} \leq \frac{3}{2}\) \(\implies -1 \leq x \leq 2 \) Por lo tanto, \(\boxed{x\in[-1,2]}\)P11.F
\(\frac{x}{1-x} \geq \frac{2+x}{x}\)
- \(1-x > 0\) y \(x > 0 \implies x > 0\) y \(x < 1\implies 0 < x < 1\) \(\implies x^{2} \geq (2+x)(1-x) = 2 -2x + x -x^{2} \)
- \(1-x > 0\) y \(x < \implies x < 0\) y \(x < 1\implies x < 0\) \(\implies x^2\leq (2+x)(1-x)\)
- \(1-x < 0\) y \(x > 0\implies x > 0\) y \(x > 1 \implies 1 < x\) \(\implies x^2\leq (2+x)(1-x)\)
- \(1-x < 0\) y \(x < 0\implies x < 0\) y \(x > 1\) ! Por lo tanto, \(x\in\emptyset\).
\(\implies x^{2} \geq 2-x-x^2 \implies 2x^{2} + x \geq 2\)
\(\implies x^{2} + \frac{1}{2}x \geq 1 \implies x^{2} + \frac{1}{2}x + \frac{1}{16} \geq 1 + \frac{1}{16}\)
\(\implies (x + \frac{1}{4})^{2} \geq \frac{17}{16}\implies |x+\frac{1}{4}|\geq \frac{\sqrt{17}}{4}\)
\(\implies x + \frac{1}{4}\geq\frac{\sqrt{17}}{4}\) o \(x+\frac{1}{4}\leq -\frac{\sqrt{17}}{4}\)
\(\implies x \geq \frac{-1+\sqrt{17}}{4}\) o \(x \leq \frac{-1-\sqrt{17}}{4}\)
Así, \(x\in\{(-\infty,\frac{-1-\sqrt{17}}{4})\cup(\frac{-1+\sqrt{17}}{4},\infty)\}\cap(0,1)\).
Por lo tanto, \(x\in [\frac{-1+\sqrt{17}}{4},1)\).
\(\vdots\)
\(\implies | x + \frac{1}{4} | \leq \frac{\sqrt{17}}{4}\)
\(\implies -\frac{\sqrt{17}}{4} \leq x + \frac{1}{4} \leq \frac{\sqrt{17}}{4}\)
\(\implies \frac{-1-\sqrt{17}}{4}\leq x \leq \frac{-1+\sqrt{17}}{4}\)
Así, \(x\in [\frac{-1-\sqrt{17}}{4},\frac{-1+\sqrt{17}}{4}] \cap (-\infty,0)\).
Por lo tanto, \(x \in [\frac{-1-\sqrt{17}}{4},0)\).
\(\vdots\)
\(\implies \frac{-1-\sqrt{17}}{4} \leq x \leq \frac{-1+\sqrt{17}}{4}\)
Así, \(x\in [\frac{-1-\sqrt{17}}{4},\frac{-1+\sqrt{17}}{4}]\cup(1,\infty)\).
Por lo tanto, \(x \in \emptyset\).
Así, \(\boxed{x \in [\frac{-1-\sqrt{17}}{4},0) \cup [\frac{-1+\sqrt{17}}{4},1)}\)
P11.G
\(\frac{x^{2} - 1}{x^{2} + 2} < 3\)
- \(x^{2} + 2 > 0 \implies x^{2} > -2\) (tautología, pues \(x^{2} \geq 0 > -2\)) \(x^{2} - 1 = 3x^{2} + 6 \implies -7 < 2x^{2} \implies x^{2} > -\frac{7}{2}\) (tautología, pues \(x^{2} \geq 0 > -\frac{7}{2}\))
- \(x^{2} + 2 < 0 \implies x^{2} < -2\) ! Así, \(\boxed{x \in \mathbb{R}}\)
Por lo tanto, \(x \in \mathbb{R}\).
P11.H
\(\frac{x^{2} - 4x}{x^{2}} \geq 1-x\)
Como \(x^2\geq 0\),
\(x^{2} - 4x \geq x^{2}(1-x) \implies x^{2} - 4x \geq x^{2} - x^{3} \)\(\implies -4x \geq -x^{3} \implies x^{3} - 4x \geq 0 \implies x(x^{2} - 4) \geq 0\)
Que se cumple si:
- \(x \geq 0\) y \(x^{2} - 4 \geq 0\) \(\implies x \geq 0\) y \(x^{2} \geq 4\) \(\implies x\geq 0\) y \((x\geq 2\) o \(x\leq -2)\)
- \(x < 0\) y \(x^{2} - 4 < 0\) \(\implies x < 0\) y \(x^{2} < 4\) \(\implies x < 0\) y \(-2 < x < 2\)
\(\implies x\geq 2\), i.e. \(x\in [2,\infty)\).
\(\implies 0 < x < 2\), i.e. \(x\in (-2,0)\).
Por lo tanto, \(x\in(-2,0) \cup [2,\infty)\)