Problema 12

Calcular los siguientes límites si es que existen:

1. limx3x29x3

limx3x29x3=limx3(x+3)(x3)x3=limx3x+3=3+3=6 2. limx1x+1x3+1 limx1x+1x3+1=limx1x+1(x+1)(x2x+1)=limx11x2x+1=1(1)2(1)+1=13 3. limx2x2x24 limx2x2x24=limx2x2(x+2)(x2)=limx21x+2=12+2=14 4. limh0(x+h)2x2h limh0(x+h)2x2h=limh0x2+2xh+h2x2h=limh02xh+h2h=limh02x+h=2x+0=2x 5. limx23x2+2x8x+2 ** Trabajo previo: 3x2+2x8=(3x)2+2(3x)243=(3x+6)(3x4)3=(x+2)(3x4) limx23x2+2x8x+2=limx2(x+2)(3x4)x+2=limx23x4=3(2)4=10 6. limx22x3x1x24 limx22x3x1x24=limx22x3x1x242x3+x12x3+x1=limx22x3x+1(x24)(2x3+x1)=limx2x2(x+2)(x2)(2x3+x1)=limx21(x+2)(2x3+x1)=1(2+2)(2(2)3+21)=1(4)(1+1)=18 7. limx+4x3+x215x3+x limx+4x3+x215x3+x=limx+4x3x3+x2x31x35x3x3+xx3=limx+4+1x1x35+1x2=4+1135+12=45 8. limx+(x+18)(x4x)x5+1 limx+(x+18)(x4x)x5+1=limx+x5+18x4x218xx5+1=limx+x5x5+18x4x5x2x518xx5x5x5+1x5=limx+1+18x1x318x41+1x5=1+18131841+15=1 9. limx1x+1x31 limx1x+1x31=1+111=20 El límite no existe. 10. limx01cos(x)sin(x) limx01cos(x)sin(x)=limx01cos(x)sin(x)1+cos(x)1+cos(x)=limx01cos2(x)sin(x)(1+cos(x))=limx0sin2(x)sin(x)(1+cos(x))=limx0sin(x)1+cos(x)=sin(0)1+cos(0)=01+1=0 11. limx2x38x2 limx2x38x2=limx2(x2)(x2+2x+4)x2=limx2x2+2x+4=22+2(2)+4=12 12. limx3x32x2+76x4x3+2x100 limx3x32x2+76x4x3+2x100=limx3x3x42x2x4+7x46x4x4x3x4+2xx4100x4=limx3x2x2+7x461x+2x3100x4=32()2+7()461+2()3100()4=0 13. limxx22x+53x4+2x+1 limx+x22x+53x4+2x+1=limx+x2x22xx2+5x23x4x4+2xx4+1x4=limx+12x+5x23+2x3+1x4=12+523+23+14 =13 14. limxyxnynxy limxyxnynxy=limxy(xy)(k=0n1xnk1yk)xy=limxyk=0n1xnk1yk=k=0n1ynk1yk=k=0n1yn1=nyn1